Attachment of cell-binding ligands to arginine-rich cell-penetrating peptides enables cytosolic translocation of complexed siRNA.
نویسندگان
چکیده
Cell-penetrating peptides (CPPs), such as nona-arginine (9R), poorly translocate siRNA into cells. Our studies demonstrate that attaching 9R to ligands that bind cell surface receptors quantitatively increases siRNA uptake and importantly, allows functional delivery of complexed siRNA. The mechanism involved accumulation of ligand-9R:siRNA microparticles on the cell membrane, which induced transient membrane inversion at the site of ligand-9R binding and rapid siRNA translocation into the cytoplasm. siRNA release also occurred late after endocytosis when the ligand was attached to the L isoform of 9R, but not the protease-resistant 9DR, prolonging mRNA knockdown. This critically depended on endosomal proteolytic activity, implying that partial CPP degradation is required for endosome-to-cytosol translocation. The data demonstrate that ligand attachment renders simple polycationic CPPs effective for siRNA delivery by restoring their intrinsic property of translocation.
منابع مشابه
Arginine-rich cell-penetrating peptides.
Arginine-rich cell-penetrating peptides are short cationic peptides capable of traversing the plasma membranes of eukaryotic cells. While successful intracellular delivery of many biologically active macromolecules has been accomplished using these peptides, their mechanisms of cell entry are still under investigation. Recent dialogue has centered on a debate over the roles that direct transloc...
متن کاملFundamental Molecular Mechanism for the Cellular Uptake of Guanidinium-Rich Molecules
Guanidinium-rich molecules, such as cell-penetrating peptides, efficiently enter living cells in a non-endocytic energy-independent manner and transport a wide range of cargos, including drugs and biomarkers. The mechanism by which these highly cationic molecules efficiently cross the hydrophobic barrier imposed by the plasma membrane remains a fundamental open question. Here, a combination of ...
متن کاملArginine-rich peptides destabilize the plasma membrane, consistent with a pore formation translocation mechanism of cell-penetrating peptides.
Recent molecular-dynamics simulations have suggested that the arginine-rich HIV Tat peptides translocate by destabilizing and inducing transient pores in phospholipid bilayers. In this pathway for peptide translocation, Arg residues play a fundamental role not only in the binding of the peptide to the surface of the membrane, but also in the destabilization and nucleation of transient pores acr...
متن کاملIn vitro Delivery of HIV-1 Nef Antigen by Histidine-rich nona-arginine and Latarcin 1 peptide
Introduction: The Nef accessory protein is an attractive antigenic candidate in the development of HIV-1 DNA- or protein-based vaccines. The most crucial disadvantage of DNA and protein-based vaccines is their low immunogenicity, which can be improved by cell-penetrating peptides (CPPs) as effective carrier molecules. Methods: In this study, the HIV-1 Nef protein was generated in the Escherichi...
متن کاملCOPA and SLC4A4 are Required for Cellular Entry of Arginine-Rich Peptides
Cell-penetrating peptides (CPPs) have gained attention as promising tools to enable the delivery of various molecules in a non-invasive manner. Among the CPPs, TAT and poly-arginine have been extensively utilized in numerous studies for the delivery of functional proteins, peptides, and macromolecules to analyze cellular signaling. However, the molecular mechanisms of cellular entry remain larg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemistry & biology
دوره 22 1 شماره
صفحات -
تاریخ انتشار 2015